纯净、安全、绿色的下载网站

首页|软件分类|下载排行|最新软件|IT学院

当前位置:首页IT学院IT技术

JVM经典垃圾收集器

aoeiuv   2021-04-20 我要评论
 
这个关系不是一成不变的,由于维护和兼容性测试的成本,在JDK 8时将Serial+CMS、 ParNew+Serial Old这两个组合声明为废弃(JEP 173),并在JDK 9中完全取消了这些组合的支持(JEP 214)。
 
 
Serial/Serial Old收集器运行示意图

 

 

它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强 调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。
迄今为止,它依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器,有着优于其他收集器的地方,那就是简单而高效(与其他收集器的单线程相比)。
  • 对于内存资源受限的环境,它是所有收集器里额外内存消耗(Memory Footprint)最小的。
  • 对于单核处理器或处理器核心数较少的环境来说,Serial收集器没有线程交互的开销,可以获得最高的单线程收集效率。
  • 分配给虚拟机管理的内存不大的情况下,例如收集几十兆甚至一两百兆的新生代,垃圾收集的停顿时间完全可以控制在十几、几十毫秒,最多一百多毫秒以内,只要不是频繁发生收集,这点停顿时间对许多用户来说是完全可以接受的。
 
 
ParNew/Serial Old收集器运行示意图
ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外 , 其余的行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致。
ParNew收集器除了支持多线程并行收集之外,是JDK 7之前的遗留系统中首选的新生代收集器,而且是除了Serial收集器外,目前只有它能与CMS 收集器配合工作。
默认开启的收集线程数与处理器核心数量相同,在处理器核心非常多(譬如32个,现在CPU都是多核加超线程设计,服务器达到或超过32个逻辑核心的情况非常普遍)的环境中,可以使用-XX:ParallelGCT threads参数来限制垃圾收集的线程数。
 
名称解释
  • 并行(Parallel):并行描述的是多条垃圾收集器线程之间的关系,说明同一时间有多条这样的线程在协同工作,通常默认此时用户线程是处于等待状态。
  • 并发(Concurrent):并发描述的是垃圾收集器线程与用户线程之间的关系,说明同一时间垃圾收集器线程与用户线程都在运行。由于用户线程并未被冻结,所以程序仍然能响应服务请求,但由于垃圾收集器线程占用了一部分系统资源,此时应用程序的处理的吞吐量将受到一定影响。
 
JDK服务器模式下默认垃圾收集器
jdk1.7 默认垃圾收集器Parallel Scavenge(新生代)+Parallel Old(老年代)
jdk1.8 默认垃圾收集器Parallel Scavenge(新生代)+Parallel Old(老年代)
jdk1.9 默认垃圾收集器G1
 
Parallel Scavenge收集器
Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器。
它的目标则是达到一个可控制的吞吐 量(Throughput),经常被称作“吞吐量优先收集器”。通过UseAdaptiveSizePolicy参数,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比 例 ( -XX : SurvivorRatio)、晋升老年代对象大小 ( -XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略(GC Ergonomics)。只需要把基本的内存数据设 置好(如-Xmx设置最大堆),然后使用-XX:MaxGCPauseMillis参数(更关注最大停顿时间)或-XX:GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器区别于ParNew收集器的一个重要特性。
 
 
Serial/Serial Old收集器运行示意图
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。如果在服务端模式下,它也可能有两种用途:一种是在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用,另外一种就是作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。
 
 
Parallel Scavenge/Parallel Old收集器运行示意图
Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。
直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重 吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组 合。
 
 
Concurrent Mark Sweep收集器运行示意图
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。通常都会用在较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验的应用。CMS收集器就非常符合这类应用的需求。它的收集过程分为四个步骤:
  1. 初始标记(CMS initial mark) ,标记下GC Roots能直接关联到的对象,速度很快,但需要停顿用户线程(根节点枚举)。
  2. 并发标记(CMS concurrent mark) ,从GC Roots能直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程。
  3. 重新标记(CMS remark) ,为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录(增量更新),这个阶段需要停顿用户线程,比初始标记时间稍长,但远比并发标记短。
  4. 并发清除(CMS concurrent sweep),清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。
 
CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿。但它也有三个明显的缺点:
  • 首先,CMS收集器对处理器资源非常敏感。事实上,面向并发设计的程序都对处理器资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。CMS默认启动的回收线程数是(处理器核心数量 +3)/4。当处理器核心数量不足四个时,CMS对用户程序的影响就可能变得很大。
  • 其次,内存利用率相对低。
    • CMS收集器无法处理“浮动垃圾”(FloatingGarbage),在CMS的并发标记和并发清理阶 段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分 垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集 时再清理掉。这一部分垃圾就称为“浮动垃圾”。
    • 因为在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CM S收集器不能像其他收集器那样等待 到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。
在JDK 5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccu-pancyFraction的值来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集, 但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致 大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。
  • 再者,CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。CMS收集器提供了一个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从 JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象 ,( 在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量 由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。
注意:CMS是老年代的收集器,如果它处理不过来或者解决不了,就会启用stop-the-wold GC- Serail Old来收集,退化了。应尽力优化程序,避免CMS退化成Serail Old。
 
总结CMS会触发Full GC有两种情况
1.promotion failed 晋升失败,多数是是由于老年代有足够的空闲空间,但是由于碎片较多,这时如果新生代要转移到老年带的对象比较大,所以,必须尽可能提早触发老年代的CMS回收来避免这个问题(promotion failed时老年代CMS还没有机会进行回收,又放不下转移到老年代的对象,因此会出现下一个问题concurrent mode failure,需要stop-the-wold GC- Serail Old)。当然老年代空闲空间不足也有可能,但因为MajorGC都会提前介入,所以promotion failed是因为老年代空闲空间不够的情况应该是极少数。
2.concurrent mode failure 业务线程运行期间不断将对象放入老年代,CMS运行期间老年代预留的内存无法满足程序分配新对象的需要,就会出现。同时上一条晋升失败也会触发。
 
 
G1收集器Region分区示意图
Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。但直到JDK 8 Update 40的时候,G1提供并发的类卸载的支持,才补全了其计划功能的最后一块拼图。
G1是一款主要面向服务端应用的垃圾收集器。一款能够建立起“停顿时间模型”(Pause Prediction Model)的收集器,停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标,那具体要怎么做才能实现这个目标呢?首先要有一个思想上的改变,在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。
G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理 论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的 Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个 Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1Heap RegionSize设定,取值范围为1MB~32MB,且应为2的N次幂,默认是总内存的2048分之一。而对于那些超过了整个Region容量的超级大对象, 将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代 的一部分来进行看待。
G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,并跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。 这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。
G1化整为零的思路理解容易,但实现的关键细节需要妥善解决:
  • Region里面存在的跨Region引用对象如何解决?使用记忆集可以避免全堆作为GC Roots扫描,但在G1收集器上记忆集的实现要复杂很多,它的每个Region都维护有自己的记忆集,这些记忆集会记录下别的Region指向自己的指针,并标记这些指针分别在哪些卡页的范围之内。G1的记忆集在存储结构的本质上是一种哈希表,Key是别的Region的起始地址,Value是一个集合,里面存储的元素是卡表的索引号。这种“双向”的卡表结构(卡表是“我指向谁”,这种结构还记录了“谁指向我”)比原来的卡表实现起来更复杂,同时由于Region数量比传统收集器的分代数量明显要多得多,因此G1收集器要比其他的传统垃圾收集器有着更高的内存占用负担。根据经验,G1至少要耗费大约相当于Java堆容量10%至20%的额外内存来维持收集器工作。CMS的卡表只有年老代指向年轻代,年老代回收时,直接粗暴的将整个年轻代加入GC ROOTS,虽然暴力,但卡表维护简单占用小,而且MajorGC 次数远远比minorGC少多了。
  • 在并发标记阶段如何保证收集线程与用户线程互不干扰地运行?这里首先要解决的是用户线程改变对象引用关系时,必须保证其不能打破原本的对象图结构,导致标记结果出现错误,CMS收集器采用增量更新算法实现,而G1收集器则是通过原始快照(SAT B)算法来实现的。此外,垃圾收集对用户线程的影响还体现在回收过程中新创建对象的内存分配上,程序要继续运行就肯定会持续有新对象被创建,G1为每一个Region设 计了两个名为TAMS(Top at Mark Start)的指针,把Region中的一部分空间划分出来用于并发回收过程中的新对象分配,并发回收时新分配的对象地址都必须要在这两个指针位置以上。G1收集器默认在 这个地址以上的对象是被隐式标记过的,即默认它们是存活的(黑色的),不纳入回收范围。与CMS中 的“Concurrent Mode Failure”失败会导致Full GC类似,如果内存回收的速度赶不上内存分配的速度, G1收集器也要被迫冻结用户线程执行,导致Full GC而产生长时间“Stop The World”(Serail Old)。
  • 怎样建立起可靠的停顿预测模型?用户通过-XX:MaxGCPauseM illis参数指定的停顿时间只意味着垃圾收集发生之前的期望值,但G1收集器要怎么做才能满足用户的期望呢?G1收集器的停顿预测模型是以衰减均值(Decay ing Average)为理论基础来实现的,在垃圾收集过程中,G1收集器会记录每个Region的回收耗时、每个Region记忆集里的脏卡数量等各个可测量的步骤花费的成本,并分析得出平均值、标准偏差、置信度等统计信息。这里强调的“衰减平均值”是指它会比普通的平均值更容易受到新数据的影响,平均值代表整体平均状态,但衰减平均值更准确地代表“最近的”平均状态。换句话说,Region的统计状态越新越能决定其回收的价值。然后通过这些信息预测现在开始回收的话,由哪些Region组成回收集才可以在不超过期望停顿时间的约束下获得最高的收益。
 
G1收集器的运作过程大致可划分为以下四个步骤:
  1. 初始标记(Initial M arking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程(根节点枚举),但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
  2. 并发标记(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆 里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以 后,还要重新处理SATB记录下的在并发时有引用变动的对象。
  3. 最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
  4. 筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region 构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧 Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行 完成的。
 
G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望。用户指定期望的停顿时间是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。
从G1开始,最先进的垃圾收集器的设计导向都不约而同地变为追求能够应付应用的内存分配速率 (Allocation Rate),而不追求一次把整个Java堆全部清理干净。这样,应用在分配,同时收集器在收集,只要收集的速度能跟得上对象分配的速度,那一切就能运作得很完美。这种新的收集器设计思路从工程实现上看是从G1开始兴起的,所以说G1是收集器技术发展的一个里程碑。
相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力。与CMS 的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region 之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。
G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载 (Overload)都要比CMS要高。
  • 内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单, 只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝
生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的。
  • 执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,譬如它们都使用到写屏障,CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索 (SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点, 但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。
 
小结
G1和CMS两款垃圾收集器单独某方面的实现细节的定性分析,通常 我们说哪款收集器要更好、要好上多少,往往是针对具体场景才能做的定量比较。按照笔者的实践经 验,目前在小内存应用上CM S的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其 优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间。
 


相关文章

猜您喜欢

  • Java调用.ktr Java定时调用.ktr文件的代码实例(解决方案)

    想了解Java定时调用.ktr文件的代码实例(解决方案)的相关内容吗,ACGkaka_在本文为您仔细讲解Java调用.ktr的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Java定时调用.ktr文件,Java调用ktr,下面大家一起来学习吧。..
  • php获取经纬度 怎样用php根据地址获取经纬度

    想了解怎样用php根据地址获取经纬度的相关内容吗,蒸蒸日上y在本文为您仔细讲解php获取经纬度的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:php,百度api,php,经纬度,下面大家一起来学习吧。..

网友评论

Copyright 2020 www.iunios.com 【OS下载站】 版权所有 软件发布

声明:所有软件和文章来自软件开发商或者作者 如有异议 请与本站联系 点此查看联系方式